Ju l 1 99 9 Generalized Weierstrass representation for surfaces in multidimensional Riemann spaces

نویسنده

  • B. G. Konopelchenko
چکیده

Generalizations of the Weierstrass formulae to generic surface immersed into R 4 , S 4 and into multidimensional Riemann spaces are proposed. Integrable deformations of surfaces in these spaces via the modified Veselov-Novikov equation are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M ay 1 99 8 Generalized Weierstrass representation for surfaces in multidimensional Riemann spaces

Generalizations of the Weierstrass formulae to generic surface immersed into R 4 , S 4 and into multidimensional Riemann spaces are proposed. Integrable deformations of surfaces in these spaces via the modified Veselov-Novikov equation are discussed.

متن کامل

Weierstrass representation for surfaces in multidimensional Riemann spaces

Generalizations of the Weierstrass formulae to generic surface immersed into R 4 , S 4 and into multidimensional Riemann spaces are proposed. Integrable deformations of surfaces in these spaces via the modified Veselov-Novikov equation are discussed.

متن کامل

. D G ] 2 3 Ju l 1 99 8 Weierstrass representations for surfaces in 4 D spaces and their integrable deformations via DS hierarchy

Generalized Weierstrass representations for generic surfaces confor-mally immersed into four-dimensional Euclidean and pseudo-Euclidean spaces of different signatures are presented. Integrable deformations of surfaces in these spaces generated by the Davey-Stewartson hierarchy of integrable equations are proposed. Willmore functional of a surface is invariant under such deformations.

متن کامل

Gap Sequences and Moduli in Genus 4

Let X denote a compact Riemann surface of genus g > 1. At each point P~X, there is a sequence of g integers, l=71(P)<72(P)<. . .<Tg(P)<2g , called the Weierstrass gap sequence at P. A positive integer ~/is a Weierstrass gap at P if there exists a holomorphic differential on X with a zero of order 7 1 at P. A positive integer which is not a gap at P is called a nongap at P. The point P is called...

متن کامل

Induced surfaces and their integrable dynamics. II. Generalized Weierstrass representations in 4D spaces and

Induced surfaces and their integrable dynamics. II. Generalized Weierstrass representations in 4D spaces and deformations via DS hierarchy. Abstract Extensions of the generalized Weierstrass representation to generic surfaces in 4D Euclidean and pseudo-Euclidean spaces are given. Geometric characteristics of surfaces are calculated. It is shown that integrable deformations of such induced surfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998